

Fortbildung Solarenergienutzung

EIGENERZEUGUNGSANLAGEN im HAUS

E-Mobilität – angetrieben mit Sonnenstrom

Referenten:

Ulf Hansen-Röbbel

Gesetzliche Rahmenbedingungen (Auswahl)

Energiewirtschaftsgesetz (EnWG)

Erneuerbare Energien Gesetz (EEG)

Ladesäulenverordnung (LSV)

Elektromobilitätsgesetz (EmoG)

Steuerrecht

Bau- und Planungsrecht

Mobilität in Zukunft: Multimodal

Heute

- Welches Auto kaufe ich
- Entscheidung nach 3 6 Jahren
- Emotional Entscheidung

Zukünftig

- Welches Verkehrmittel nutze ich
- Entscheidung bei jedem Weg
- Rationale Entscheidung

24.09.2020

Alternative Antriebe (Kfz |Teil 1)

Mikrohybrid

Mildhybrid

Vollhybrid

Plug-In-Hybrid (PIH)

Elektrofahrzeuge mit Range Extender (REEV)

Batterieelektrische Fahrzeuge (BEV)

Brennstoffzelle (FCV)

Alternative Antriebe (Fahrräder | Teil 2)

Pedelec (Unterstützung bis 25 km/h; Fahrrad)

S-Pedelec (Unterstützung bis 45 km/h; Kleinkraftrad)

E-Bike (Leichtmofa bis max. 20 km/h; Kleinkraftrad)

Lastenräder (E-Motor-Unterstützung bis 25/45 km/h)

Schwerlastenräder und Lastanhänger mit E-Antrieb

E-Roller

Sonderkonstruktionen wie Segway

E-Mobilität: Sonne liefert Energie – Jahr für Jahr.

Auf jedem Quadratmeter Boden landet im Laufe eines jeden Jahres die Energiemenge von ca. 100 Liter Superbenzin!

Energie zur Mobilität: Gehen – Radfahren – Auto fahren

Fortbewegung	Energiebedarf	Dauer	
Langsames Rad fahren (15km/h)	2.363Wh	ca. 7 Stunden	
Zügig Rad fahren (25km/h)	3.753 Wh	ca. 4 Stunden	
Gehen(5km/h)	6.158 Wh	ca. 20 Stunden	
Joggen(8,6km/h)	9.120 Wh	ca. 12 Stunden	
Auto fahren (100km/h)	67.554 Wh	1 Stunde	

Verbrennungsmotor:

Fahrleistung: 10.000 km/a → 6.755 kWh/a = 690 ltr/a → 1.796 t CO₂

E-Auto mit Netzstrom:

Fahrleistung: 10.000 km/a → 1.800 kWh/a → ca. 0,9 t CO₂

Sonnenstromernte: Flächenbedarf

- 1 kWp → heute ca. 5 m² Solargeneratorfläche benötigt
- 1 kWp → Ertrag von 900 1100 kWh Strom/Jahr

Hier: 12 Module x 340 Wattpeak = 4.080 Wattpeak = 4,8 kWp

Eine 10 kW_p Anlage spart ~ 100 to (!) CO₂ in 20 Jahren Betriebsdauer!

E-Mobilität: Sonnenstrom selbst produziert – echt günstig!

Pedelecs ...

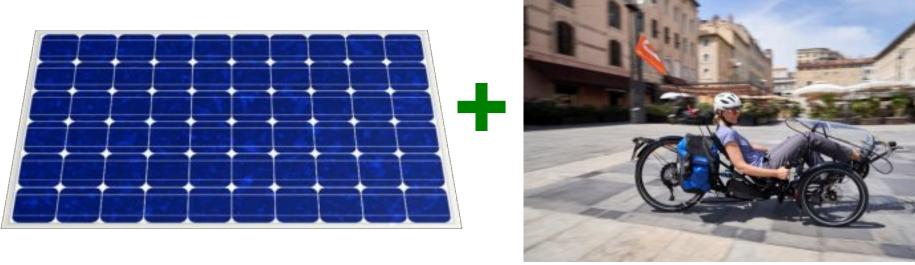
... und Solarstrom:

250 Wh/Fahrt → 150 Fahrten/a → 37,5 kWh/a → 40 Wp → 0,20 qm

33 km/Fahrt

5.000 km/a

→ Stromverbrauch/a → Modulleistung → Modulfläche



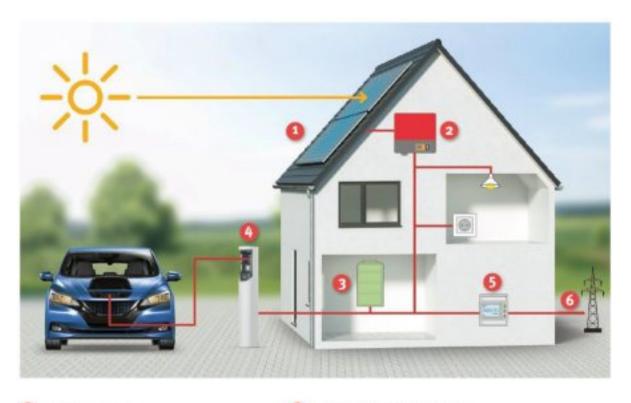
E-Mobilität: Sonnenstrom selbst produziert – echt günstig!

E-Mobile... ... und Solarstrom: 5 kWh/Fahrt → 150 Fahrten/a → 750 kWh/a → 830 Wp → 4,20 qm 33 km/Fahrt 5.000 km/a → Stromverbrauch/a → Modulleistung → Modulfläche

E-Mobilität: Sonnenstrom selbst produziert – echt effektiv!

1 PV-Modul → 340 Wp → ~ 310 kWh/a → 40.000 km/a

E-Mobilität: Sonnenstrom selbst produziert – echt effektiv!

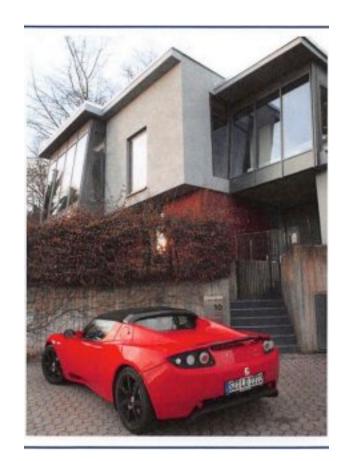


1 PV-Modul → 340 Wp → ~ 310 kWh/a → 2.000 km/a

E-Mobilität: Günstiger und besser mit Sonnenstrom

- Solargenerator
- Wechselrichter
- Batteriespeicher

- Ladestation f
 ür das E-Auto
- Stromzähler für Bezug und Einspeisung
- Anschluss an das öffentliche Netz



E-Mobilität: Lademöglichkeiten

Ein Auto steht durchschnittlich 23 Stunden. Pro Tag!

95% der Ladevorgänge werden zu Hause und/oder am Arbeitsplatz stattfinden!

E-Mobilität: Lademodi im Überblick

Mode 1: AC | Haushaltssteckdose max. 16 A/3,7 kW

Mode 2: AC | einphasig ≤ 3,7 kW, dreiphasig ≤ 22 kW

Mode 2: Ladekabel mit ICCB (Steuerung + Schutz)

Mode 3: AC | öffentlich Wallbox, dreiphasig ≤ 43,5 kW

Mode 4: DC-Low-Ladung mit Typ-2-Stecker

Mode 4: DC-High-Ladung mit CCS v CHAdeMO

E-Mobilität: Ladeszenarien im Überblick

Garage

Stellplatz

Nachladen

unterwegs

Überlandfahrt

Mode 2

oder

Wallbox

Mode 3

Ladesäule

Mode 4

DC-Schnellladung

Ladedauer

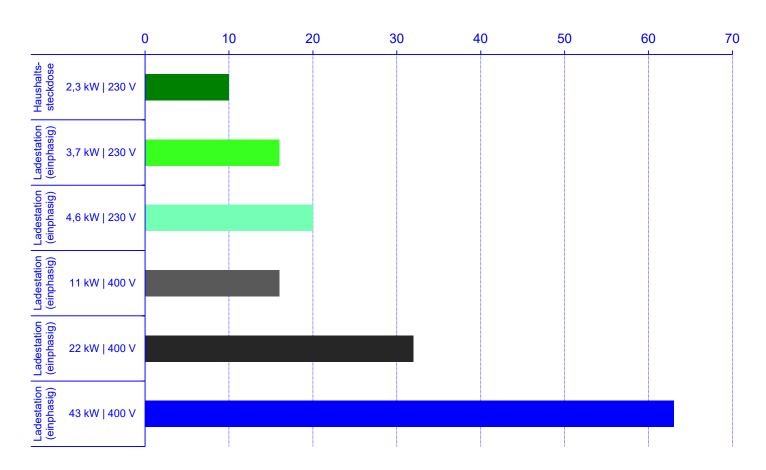
6 bis 8 Stunden

Ladedauer

< 1 Stunde

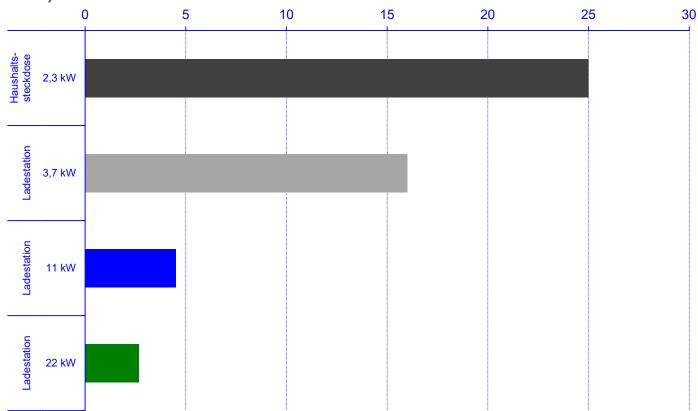
Ladedauer

0,5 Stunden


E-Mobilität: Ladeleistung und -dauer

Ladetechnik	AC 1-phasig 230 V / 16 A 3,7 kW	AC 3-phasig 400 V / 16 o. 32 A 11 o. 22 kW	AC 3-phasig 400 V / 63 A 43 kW	DC Combo 2 400 V / 80 A 20 o. 50 kW	DC CHAdeMO 400 V / 80 A 20 o. 50 kW	DC Tesla 400 V / 175 A 120 kW
Ladedauer	8 h	3 - 5 h	0,5 - 1 h	0,5 h	0,5 h	0,5 h
VW e-Up						
VW e-Golf						
BMW i3		11 kW Option				
ION, C-Zero, iMiEV						
Kia Soul EV						
Nissan Leaf						
MB Smart ed		22 kW Option				
Opel Ampera-e						
Renault Kangoo ZE						
Renault ZOE		22 kW	alte Modelle			
Tesla Model S		16,5 kW				

E-Mobilität: Ladeleistung und Absicherung


Absicherung einer Ladestation [A]

E-Mobilität: Ladeleistung und -dauer

Dauer eines kompletten Ladezyklus Renault Zoe (41 kWh)

E-Mobilität – angetrieben mit Sonnenstrom

Kompaktwagen	Kompaktwagen	Koropaktwagen	Kompoktwagen	Kompoliteragen	Kompaktwagen
ord / Focus Electric	Hyundai / loniq	Kin / Soul EV	Nissan / Lesf	Renault / Zue	VW / E-Golf
2013	2016	2014	2010	2013	2016
5	5	5	5	5	5
241-1.000	kA	280-890	460-1.215	430~1.040	kA
1,630	kA.	1.565	1,535	1.480	1.520
455	kA	470	410	485	440
137	165	145	144	135	150
107	88	81	80	65	100
15,4	kA.	14,7	15,0	14,6	12,7
162	250	210	200/250 ⁽¹⁾	240	300
11/6,5	kA.	sjo,s	10(0,5 / 8(0,5 1)	7,5(0,5	kA.
s6 34.900	kA	ab 28.890	29,265/34,385 bzw. 23,365/28,485 th BM ¹⁾	ab 21,500 to BM	KA.
4.000	4.000	4,000	5.000 21	5.000 2)	4.000

LandSchafftEnergie 24.09.2020

Bildquelle:https://www.nuemberg.de/imperia/md/solariniti ative/dokumente/marktuebersicht-e-auto-2018.pdf

E-Mobilität: Reichweitenängste – und echte Fahrstrecken

- 50 Kilometer ist die durchschnittliche t\u00e4gliche Fahrstrecke in Deutschland.
 Im E-Auto ist das ein Stromverbrauch von etwa 8 Kilowattstunden.
- 90 Prozent der Fahrten sind kürzer als 50 km.

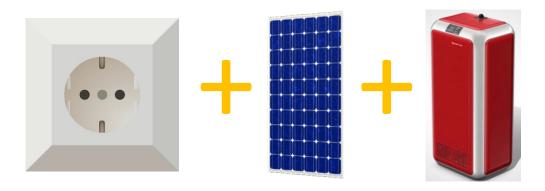
Empfohlene Apps für die Erfassung der typischen Fahrstrecken

Tipps:

Wie weit fahre ich wie oft?

Führen Sie zwei Wochen lang ein Fahrtenbuch

Für die meisten Fahrten ist die Reichweite heutiger


E-Autos ausreichend

24.09.2020

Photovoltaik: Empfehlungen zur technischen Auslegung

- Photovoltaik und Batteriespeicher (Lithiumbatterien)
- pro 1.000 kWh Stromverbrauch (Haushalt)
- mindestens 1 kWp PV (Modulleistung)
- 1,5-2 kWh Speicher (Nettokapazität)

E-Mobilität: Empfehlungen zur technischen Auslegung

- Photovoltaik und Batteriespeicher und E-Auto
- pro 1.000 kWh Stromverbrauch (ohne Autostrom)
- mindestens 1 kWp PV (Modulleistung) + 1,5 kWp
- 1,5-2 kWh Speicher (Nettokapazität)
- Pendlerfahrzeug: + 0,5 kWh Speicher
- **Zweitwagen**: kein zusätzlicher Speicher

E-Mobilität: Anschluss gesucht

Gerhard Seybert - Fotolia

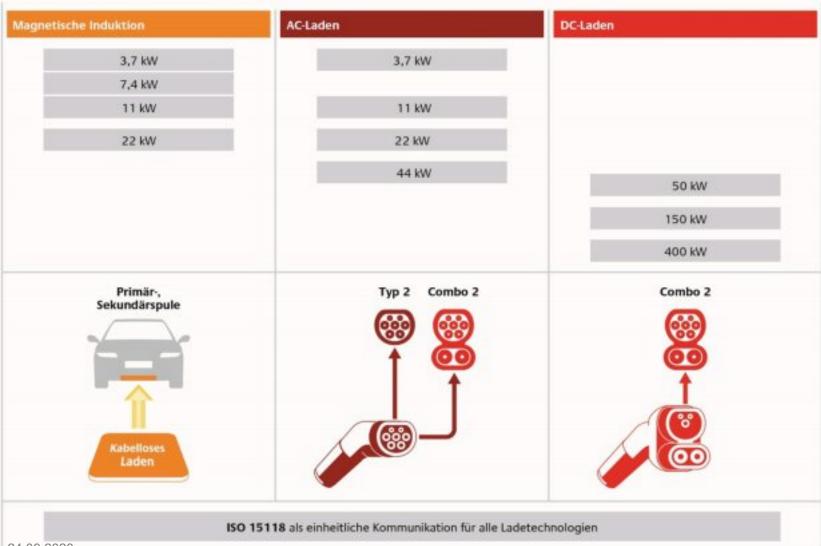
Typ-2 Stecker

- Europäischer
 Standardstecker
- Leistung bis 43 kW / 62 A
- AC 1- o. 3-phasig und DC-fähig

Artfocus - Fotolia

Combined Charging System (CCS)

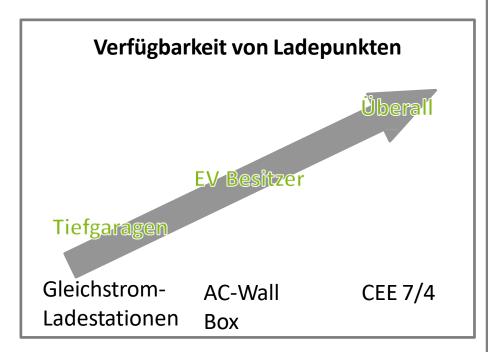
- Europ. Standardstecker für DC-Schnellladung
- Leistung bis
 170 kW / 200 A


Karin & Uwe Annas - Fotolia

CHAdeMO

- von asiatischen Herstellern favorisiert
- Schnellladung (DC)
- Leistung bis
 62,5 kW / 200 A

E-Mobilität: Ladeverfahren



24.09.2020

Quelle: Hon. Prof. Sven Strube

E-Mobilität: Laden im privaten Umfeld – Ladeinfrastruktur

Quelle: bmw.de

AC Wall Box:

- Typische Ladeleistung 11 kW (22 kW) (begrenzt durch Netzanschluss)
- 500€ 1500€
- Ladezeit 2 bis 4 h (marktübliche EVs, abhängig vom Bordladegerät)

Quelle: schnellladen.de

Quelle: busch-jaeger.de

DC Home Ladestationen:

- Bis zu 11 kW (22kW) Ladeleistung (begrenzt durch den Netzanschluss)
- 10.000€ 15.000€

CEE 7/4:

- Maximale Ladeleistung 2.4 kW
- Ladezeit 10 bis 20 Stunden
- 15€

E-Mobilität: Die Kombination sorgfältig abstimmen

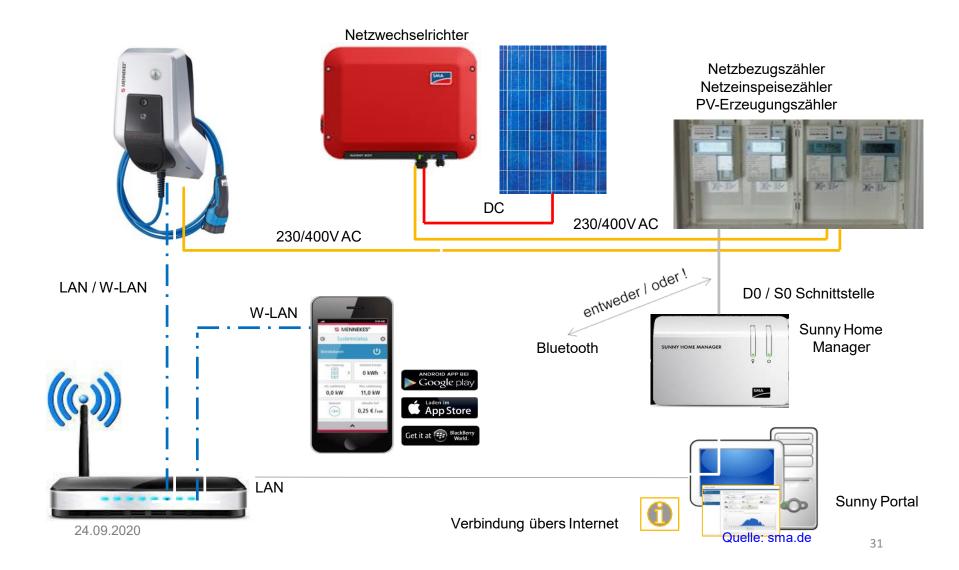
PV-Anlage, Batteriespeicher und Wallbox

- Wähle Wallbox passend zum Auto aus
- Aber: Nicht jede Wallbox ist intelligent
- Wenn PV schon vorhanden → PV-kompatible Wallbox wählen
- Wenn E-Auto und Ladestation zuerst gekauft werden soll, Ladestation wählen, die später intelligent mit PV+Speicher verbunden werden kann

E-Mobilität: Ladeinfrastruktur und Anschaffungskosten

- <u>Technik-Paket</u> bestehend aus:
 - Ladestation, allstromsensitiver Fehlerstromschutzschalter (FI),
 - Steuerungsmodul für PV-Anbindung,
 - Ladekabel Typ 2 (falls nicht vorhanden) 1.700 Euro
- Installationskosten und Marge Elektroinstallateur, je nach Aufwand ca. 1.000 bis 1.700 Euro
- Anschaffungskosten für <u>E-Auto</u> ca. 15.000 bis über 80.000 Euro

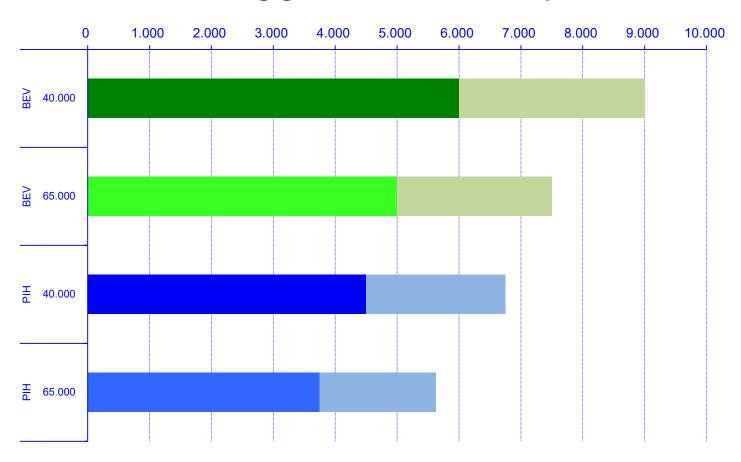
E-Mobilität: Kostenvorteile nach dem Kauf


- Kraftstoffkosten Verbrenner:
 15.000 km mal 7 Liter/100 km mal 1,50 Euro/Liter = 1.575 Euro
- Stromkosten E-Auto (Netzstrom):
 15.000 km mal (ø) 18 kWh/100 km mal 0,35 Euro/kWh = 945 Euro
- Ersparnis E-Auto (Netzstrom):630 Euro pro Jahr
- Stromkosten E-Auto (50 % Netzstrom und 50 % PV-Strom):
 15.000 km mal (ø) 18 kWh/100 km mal 0,24 Euro/kWh = 648 Euro

Ersparnis E-Auto mit 50 % Sonnenstrom: 927 Euro pro Jahr

E-Mobilität: Optimiertes Laden mit Sonnenstrom

E-Mobilität: Förderangebote und Steuervorteile


- Gratis-Laden an manchen öffentlichen Ladesäulen, aber vermutlich nicht dauerhaft
- Förderung für Ladestation in Niedersachsen:
 in manchen Gemeinden/Regionen/Stadtwerken: häufig ca. 500 €
- Umweltprämie 6.000 Euro (anteilig Bund / Autohersteller),
 z. T. kombiniert mit zusätzlichen Abwrackprämien der Autohersteller
- Lokale E-Auto-Förderung von Kommunen und Stadtwerken, seit kurzem <u>auch</u> kombinierbar mit Bundesförderung
- Steuerbefreiung 100% f
 ür 10 Jahre (nur reine E-Autos, keine Plug-In-Hybride)
- Versicherung kann günstiger sein (Vergleichen!)
 https://www.welt.de/motor/news/article174382933/Stromer-werden-im-Unterhalt-guenstiger-Versicherungstarife-fuer-Elektroautos.html
- Ab 2019 muss E-Firmenfahrzeug bei Privatnutzung nur noch zu 0,5% der Anschaffungskosten versteuert werden (geldwerter Vorteil)

E-Mobilität: Förderprogramm (Umweltprämie)

Zuschuss in Abhängigkeit des Nettolistenpreises

24.09.2020

Quelle: BAFA

target

E-Mobilität: In Zukunft. Seit heute.

